Author Affiliations
Abstract
1 Information and Navigation College, Air Force Engineering University, Xi’an 710077, China
2 College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
3 College of Computer and Science, National University of Defense Technology, Changsha 410073, China
4 Teaching and Research Support Center, National University of Defense Technology, Changsha 410073, China
Remarkable progress has been made in satellite-based quantum key distribution (QKD), which can effectively provide QKD service even at the intercontinental scale and construct an ultralong-distance global quantum network. But there are still some places where terrestrial fiber and ground stations cannot be constructed, like harsh mountainous areas and air space above the sea. So the airborne platform is expected to replace the ground station and provide flexible and relay links for the large-scale integrated communication network. However, the photon transmission rate would be randomly reduced, owing to the randomly distributed boundary layer that surrounds the surface of the aircraft when the flight speed is larger than 0.3 Ma. Previous research of airborne QKD with boundary layer effects is mainly under the air-to-ground scenario in which the aircraft is a transmitter, while the satellite-to-aircraft scenario is rarely reported. In this article, we propose a performance evaluation scheme of satellite-to-aircraft QKD with boundary layer effects in which the aircraft is the receiver. With common experimental settings, the boundary layer would introduce a 31 dB loss to the transmitted photons, decrease 47% of the quantum communication time, and decrease 51% of the secure key rate, which shows that the aero-optical effects caused by the boundary layer cannot be ignored. Our study can be performed in future airborne quantum communication designs.
satellite-to-aircraft quantum key distribution boundary layer aero-optical effects 
Chinese Optics Letters
2023, 21(4): 042702
作者单位
摘要
国防科技大学 空天科学学院, 湖南 长沙 410073
飞行器在大气层中高速飞行时, 气动加热, 光学窗口与外部气流相互作用形成了复杂的流场结构。其折射率分布无规则、不均匀, 很难准确得到光线的传播路径。为此, 提出三种四阶精度方法的光线追迹方案, 通过与螺旋光线解析解结果进行对比, 发现四阶Runge-Kutta方法光线追迹过程中最大相对误差为1.6×10-8, Richardson外推法为1.2×10-8, Adams线性多步法为1.2×10-11, 确定Adams线性多步法是可用于光线追迹的高精度、高速的方法。基于多项式拟合的任意点插值方法可以获得比距离反比法更高的折射率场插值精度。并将该方法运用在导弹的光学窗口附近流场引起的波前畸变的计算, 对计算结果进行了对比, 结果表明Adams线性多步法以Runge-Kutta方法起步, 但Admas方法没有忽略前一步的计算结果, 不会带来误差的累积, 所以结果更接近真实解, 而Richardson外推方法算出的光程差大小与其他两种方法明显不同。
非均匀介质 折射率 高精度 光线追迹 inhomogeneous medium refractive index high precision ray tracing 
红外与激光工程
2019, 48(5): 0503005

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!